Message passing approach for general epidemic models
نویسندگان
چکیده
منابع مشابه
A message passing approach for general epidemic models
In most models of the spread of disease over contact networks it is assumed that the probabilities per unit time of disease transmission and recovery from disease are constant, implying exponential distributions of the time intervals for transmission and recovery. Time intervals for real diseases, however, have distributions that in most cases are far from exponential, which leads to disagreeme...
متن کاملA message-passing approach for recurrent-state epidemic models on networks
Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest. Recently, dynamic message-passing (DMP) has been proposed as an efficient algorithm for simulating epidemic models on networks, and in particular for estimating the probability that a given node will become infectious at a particular time. To date, DMP has been applied exclusively to models with one-...
متن کاملContaining epidemic outbreaks by message-passing techniques
The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient meanfield approximation...
متن کاملApproximate Message Passing for Bilinear Models
Approach: We take a Bayesian approach to the inference problems (in particular, posterior estimation) that revolve around the bilinear model (1). In particular, we leverage the approximate message passing (AMP) framework of [2], [3] and extend it to the bilinear domain. Compared to Bayesian approaches that rely on Gibbs sampling methods or variational inference, the AMP framework allows us to f...
متن کاملAdversarial Message Passing For Graphical Models
Bayesian inference on structured models typically relies on the ability to infer posterior distributions of underlying hidden variables. However, inference in implicit models or complex posterior distributions is hard. A popular tool for learning implicit models are generative adversarial networks (GANs) which learn parameters of generators by fooling discriminators. Typically, GANs are conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2010
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.82.016101